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We consider the problem of finding the densest closed packing of hard disks with proposed different radii in
a circular environment, such that the radius of the circumcircle is minimal. With our approach, we are able to
find denser packings for various problem instances than known from the literature. Both for the dynamics of
the simulation and for the optimum values of the radii of the circumcircles, we find various scaling laws.
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I. INTRODUCTION

The problem of determining a spatial arrangement or even
the densest packing of hard disks and spheres is often stud-
ied, as these systems are widely used in physics as simple
two- and three-dimensional models for granular matter, col-
loidal systems, fiber-reinforced composites, and molecular
crystals �1–5�. Here usually monodisperse and bidisperse
systems are considered, i.e., either all disks and spheres ex-
hibit the same radius value or one of two different values. In
recent years, the focus of research has shifted to densest
packings of items with shapes for which the determination of
overlappings between them is slightly more difficult, such as
ellipsoids �6� and spherocylinders. It has, e.g., been found
that a random packing of ellipsoids with a specific aspect
ratio �M&M candies� is denser than a random packing of
spheres �7�. Furthermore, densest packings of particles with
long-range interactions, in confinement, and under con-
straints, such as e.g., shear forces and repulsive walls �8�, are
investigated. Usually, these packing problems are considered
in either two or three dimensions. But also the packing of
high-dimensional hard spheres with identical radii is of in-
terest as this problem can be mapped on finding efficient
binary codes for digital communications �9,10�.

For many of these more complicated packing problems,
no exact solution is known, such that heuristic optimization
algorithms have to be used in order to find at least quasiop-
timum configurations for these NP-complete problems. A va-
riety of specifically constructed and general purpose methods
has been applied to these problems. In order to compare the
quality of these heuristic methods, a set of well-defined
benchmark problems has been created, such as e.g., the prob-
lem of packing disks with identical radii in a unit square:
here a given number of N identical disks has to be placed in
the square in a way that the radius value of these congruent
disks is maximized �11�. This problem has been studied very
extensively, optimality proofs were provided for small num-
bers of N �e.g., for N�27 in �12� and for N=36 in �13��. For
a recent overview of this problem, see, e.g., the review �14�,
and the references therein. Similarly, the problems of pack-
ing circles in a circle �15�, circles in a triangle, squares in a

circle, and triangles in a circle have been extensively studied.
Also for these problems, exact proofs for the globality of the
found solutions were partially provided and exact methods
for some small numbers of N were developed �see, e.g.,
�16��. Most of these benchmark problems consider systems
with objects of the same shape and size; sometimes two or
three different sizes are considered. However, we want to
focus on multidisperse systems for which all object sizes
differ from each other.

Multidisperse packing problems exhibit additional fasci-
nating properties when compared to monodisperse packing
problems. The effect of multidispersity on the microstructure
can be dramatic �17�. When considering, e.g., particles which
partially exhibit conducting properties, one finds that they
are often prevented from forming a connected network as a
result of the relative size and composition of the surrounding
nonconducting particles �18�. A further example involves the
dissolution of a crystal comprised of multidisperse disks,
where the large disks restrict the solubility of the crystal in
the solvent �19�.

II. CLASSIC APPROACH TO MULTIDISPERSE PACKING

Recently, a benchmark contest �20� was performed for
which the task was given as follows: Consider a system of N
hard disks with radii ri= i �i=1,2 , . . . ,N�. In the benchmark
contest, only system sizes up to N=50 were considered.
These disks shall be packed in a circular environment in a
way that the radius R of the circumcircle is minimal. An
example for 50 disks is shown in Fig. 1. If we denote the
coordinates of the midpoint of disk i as xi and yi and assume
that the midpoint of the circumcircle is located at the origin,
R is given as

R = maxi��xi
2 + yi

2 + ri� . �1�

A configuration is therefore completely described by the or-
dered set of locations �v� i�= ��

xi

yi
�� of the midpoints of the

various disks. The disks must not overlap. In order to meet
this constraint, a penalty function

P�i, j� = �ri + rj − d�i, j� + ����ri + rj − d�i, j�� , �2�

between each pair �i , j� of disks is introduced, with
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d�i, j� = ��xi − xj�2 + �yi − yj�2 �3�

being the distance between the midpoints of disks i and j, �
being an offset in order to put more emphasis on small over-
lappings, and

��a� = �1 if a � 0

0 otherwise,
	 �4�

being the Heaviside function. Thus we get the overall Hamil-
tonian

H = R + �P = R + �
1

2

i,j

P�i, j� , �5�

with the Lagrange multiplier �. � has to be chosen in such a
way that while R is minimized, the optimization process ends
up with P�i , j�=0 for all pairs of disks.

We will focus on this benchmark problem throughout this
paper, as it is a very good example for a multidisperse sys-
tem of hard disks, as it is a NP �non-deterministic polynomial
time�-complete problem for which no exact algorithm solv-
ing this problem in polynomial time is known, and as the
benchmark contest provided world record results achieved in
competition between 155 groups from 32 countries having
taken part in the contest, with which we can compare our
results.

We apply the classic physical optimization algorithm
simulated annealing �21� to this problem. Within this ap-
proach, one starts out with a randomly generated configura-
tion and an initial high temperature. Then the system is sub-
jected to a cooling schedule in which the temperature is
gradually decreased towards zero, such that the system un-
dergoes a transition from a high-energy unordered regime to
a low-energy ordered configuration, in which it finally
freezes. At each temperature step, several moves are per-
formed which change the current configuration � slightly to
a tentative new configuration �.

Three different move routines are used: �a� The shift
move randomly selects a disk i and shifts it slightly to a new
position nearby its previous place. For this purpose, two
small uniformly distributed random numbers �x and �y are
chosen from the interval �−	shift ; +	shift� and added to the
coordinates of the midpoint of the ith disk, such that the
tentative new configuration � is given by

� = ��x1

y1
,�x2

y2
, . . . ,�xi + �x

yi + �y
, . . . ,�xN

yN
� . �6�

As this shift move should only allow for very small quiver-
ings of the disks, we choose 	shift=1, such that the relative
alignment of the disks in the configuration usually remains
unchanged. �b� The jump move works the same way as the
shift move, but it shifts the disk not only locally, but to a
large extent, such that one disk can jump nonlocally to an
entirely new location. Here we choose 	jump=1000, such that
this jump move lets one disk jump over large distances and
can thus lead to a new arrangement of the disks. Here one
might argue why it is necessary to work with two different
move routines, working the same way, but on different
length scales, especially as the jump move includes the shift
move if �x and �y are chosen very small. However, during
our tests, we found that it is necessary on the one hand to put
a lot of emphasis on the small length scale in order to let all
the disks quiver slightly and on the other hand, to allow also
for larger jumps, even if the probability that such a move
leads to an improvement if the configuration is already rather
dense, might be very small. We will show how the results
change with changing the move parameters in Sec. IV. �c�
The third move routine, the swap move, randomly selects a
pair of disks �i , j� with neighboring radius values, i.e., ri
=rj 
1, and exchanges their locations, such that the tentative
new configuration � is given as

� = ��x1

y1
, . . . ,�xi+1

yi+1
,�xi

yi
, . . . ,�xN

yN
� . �7�

These moves have in common that most of the configuration
remains unchanged, as only one or two disks are displaced
when the move is accepted. Thus, all these moves obey the
local search paradigm.

Each of these moves is accepted or rejected according to
the Metropolis acceptance criterion �22� with the probability

p�� → �� = �1 if �H � 0

exp�− �H/�kBT�� otherwise,
	 �8�

with �H=H���−H��� being the energy difference between
the current configuration � and the tentative new configura-
tion �, with the temperature T, and with the Boltzmann con-
stant kB, which is set to 1 in computer simulations, such that
the temperature is measured in the same units as the energy.
From the point of view of optimization, the temperature is
simply a control parameter governing the transition from a
quasirandom walk regime, in which nearly all moves are
accepted, to a greedy regime, in which each move leading to
a deterioration is rejected. In case of acceptance, one sets
�ª�, otherwise one stays in the current configuration �.
Then one proceeds with the next move altering �. We also

13

14

15

16

17

18

19

20

21

22
23

24

25

2627

28

29

30
31

32

33

34

35

36

37

38

39

40

41

42

4344

45 46
47

48

49

50

FIG. 1. Best solution found for the multidisperse packing prob-
lem with 50 disks: the circumcircle has a radius R
=220.600 418 7. . .. The numbers within the larger disks denote their
radius values.
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tested more modern physical optimization algorithms such as
parallel tempering �23–25� and multicanonical algorithms
�26,27�, but they yielded worse results than simulated an-
nealing, a result which is in accordance with the extensive
investigations for the traveling salesman problem in �28�.

III. DYNAMICS OF THE OPTIMIZATION PROCESS

At first we want to have a look at the dynamics of the
optimization process. We start out with the results for a pa-
rameter set we found to be optimal. In the next section, we
will describe how the results change in dependence on the
parameter values.

We decrease the temperature T via an exponential cooling
schedule, i.e., Tnew= f �Told and choose the cooling factor f
=0.99, the initial temperature Tinitial=100, and the final tem-
perature Tfinal=10−4. At the end, we add a Greedy step at T
=0, such that we have overall 1377 temperature steps. In
each temperature step, we perform 20 000 measurements, the
first 5000 of which are discarded, as the system needs some
time to equilibrate at the new temperature value. In order to
get independent measurements, we perform 40 sweeps be-
fore a new measurement is taken. The shift move and the
jump move are called with probability 1

4 each; the swap
move is called with probability 1

2 . For penalizing the over-
laps, we use �=0 and �=1. We start out with a random
configuration. The various disks are placed randomly within
a circle whose midpoint is located at the origin and whose
radius is so large that hardly any overlaps occur. Then the
cooling process is started.

Please note that we show results only for the system sizes
N=10, 20, 30, 40, and 50, but we also checked the results for
several intermediate values of N.

We find that the mean energy �H� decreases linearly with
decreasing temperature T at high temperatures. When fitting
the data shown in the left graphic of Fig. 2, we get exactly

�H� = 2NT . �9�

This result is also found for all other system sizes we inves-
tigated and does not change if starting at higher initial tem-
peratures or changing the amount of calculation time per
temperature step, at least if this amount does not become too
small. We also considered a corresponding multidisperse

packing problem of hard spheres in three dimensions, where
we got the result �H�=3NT �29�. We can generally write

�H� = DNkBT , �10�

with D being the dimension of the considered problem. This
result can also be easily derived analytically in the limit of
large values of R under the assumption that the particles
perform their random walks independently of each other,
only restricted in their movements by the barrier of the cir-
cumcircle, whose radius can be enlarged only with a prob-
ability proportional to exp�−1 / �kBT��. Such a linear depen-
dence of the energy of the system on the temperature is also
found for other physical systems, in which the particles
move independently of each other but are restricted in their
movements by a barrier, like the particles of an ideal gas.
There, each dimension provides one translational degree of
freedom, contributing 1

2kBT per particle to the overall energy,
such that the energy decreases linearly with decreasing tem-
perature. Please note that the different sizes of the disks of
our multidisperse system have no influence on the linear de-
crease of the mean energy at high temperatures. Only the
number of particles determines the prefactor.

But then there comes a point at which the various disks
become aware of each other, such that this linear decrease
cannot continue anymore. Instead, at low temperatures, a
transition towards a freezing process takes place, until the
system finally gets stuck at the bottom of some local valley
in the energy landscape. This freezing transition can be best
viewed when considering the specific heat

C =
��H�
�T

. �11�

For calculating the specific heat, we use the numerically
more stable formula

C =
Var�H�

kBT2 =
�H2� − �H�2

kBT2 , �12�

which is equivalent to formula �11� in thermal equilibrium.
Looking at the right graphic in Fig. 2, we find that the spe-
cific heat is virtually constant at high temperatures, resolving
the linear decrease of the mean energy �H� in this tempera-
ture range as follows:
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FIG. 2. �Color online� Linear decrease of the mean energy �H� with decreasing temperature T at high temperatures �left� and specific heat
C vs temperature T �right� for various system sizes.
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C = DNkB. �13�

When the temperature decreases beyond T�N, C slightly
decreases towards an intermediate minimum. This decrease
becomes more pronounced when increasing N. The mini-
mum value is given by

Cmin,intermediate = �1.45 
 0.05�N . �14�

The temperature at which this intermediate minimum lies
increases slightly with increasing N from T�1 for N=10 to
T�1.75 for N=50.

Lowering the temperature even further, the specific heat
exhibits a peak indicating the freezing transition of the sys-
tem. The freezing temperature, at which the peak of the spe-
cific heat lies, is nearly system size independent, and lies at
Tf �0.07 for small system sizes and Tf �0.073 for N30.
The height of the peak increases linearly with the system size
as follows:

C�Tf� � 2.6N . �15�

Only the height of the peak for N=50 is slightly larger.
Afterwards, the specific heat decreases again. Due to

rounding errors occurring while calculating the variance,
strong oscillations occur at small temperatures, for which the
factor 1 / �kBT2� becomes very large. Partially, the specific
heat increases �1 /T2 at very low temperatures.

Next we have a look at the development of the expecta-
tion value of the penalty function P=
i�jP�i , j�, which is
shown in the left graphic of Fig. 3. At first sight, this graphic
looks highly unusual, as one expects penalty functions to
decrease from large values at the beginning to hopefully 0 at
the end of the optimization run. But as already mentioned,
hardly any overlaps can be formed for high temperatures, as
the size of the circumcircle is so large that the various disks
can be located rather distant from each other. Thus, only
when decreasing T and thus decreasing R, the various disks
can get closer together and the sizes of the overlaps first
increase, until the penalties are sensed by the system and the
overlaps decrease again.

The larger the system size, the larger is the sum of the
overlaps which can occur in the system, thus the peak is
higher for larger values of N. Furthermore, the peak is lo-

cated at higher temperatures for larger system sizes. If denot-
ing the temperature at which �P� exhibits its peak as TP, we
find the power law

TP � 0.39N0.71 �16�

for the temperature at which the maximum of the peak lies
and the linear dependence

�P��TP� � 0.17N − 0.55 �17�

for the height of the peak, at least for the system sizes we
consider.

The Hamiltonian of our packing problem in Eq. �5� is
composed of two addends such as the Hamiltonian

H = H0 − HNM = − 

�i,j�

JijSiSj − H

i

Si �18�

of the Ising model with Jij being the interaction between the
Ising spins Si and Sj = 
1, H being the magnetic field, N
being the number of spins, and M being the magnetization
of the system. There, the term −HNM is called the Zeeman
term, which enables the coupling of the spins to the magnetic
field. We may interpret this term as a penalty function forc-
ing the various spins to align along the direction of the mag-
netic field. Thus, we may draw the analogy that P corre-
sponds to the magnetization M and the Lagrange multiplier
�, which governs the strength of the penalty function, to the
magnetic field H. For the magnetic system, the susceptibility
is defined as

� =
��M�

�H
=

N

kBT
Var�M� . �19�

Analogously, we define a susceptibility for our packing prob-
lem as

� =
��P�
��

=
Var�P�

kBT
. �20�

The results for this susceptibility are shown in the right
graphic of Fig. 3. We find basically the same behavior as for
�P�. If denoting the temperature at which the susceptibility
exhibits its peak as critical temperature Tc, we get the power
law
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FIG. 3. �Color online� Expectation value �P� of the sum of the penalties �left� and corresponding susceptibility � vs temperature T �right�
for various system sizes.
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Tc � 0.31N0.71 �21�

for the dependency of the critical temperature on the system
size and the linear law

��Tc� � 0.31N − 1.2 �22�

for the height of the peak. Please note that Tc is much larger
than Tf. Furthermore, note again that some of these results
might change if working with larger system sizes.

Finally, we want to have a look at the velocity of the
dynamics. For this purpose, we measure the total acceptance
rate of all moves for each temperature, which is shown in
Fig. 4. We find that the decrease of the acceptance rate is
obviously driven by at least two different influences, such
that we have a look at the partial acceptance rates for the
various moves �shift move, jump move, and swap move�,
which are shown in �30�. We find for all partial acceptance
rates that they are the larger, the larger the system size is and
that they decrease sigmoidally. The acceptance rate for the
jump move decreases first, then the acceptance rate of the
swap move, and slightly afterwards the acceptance rate of the
shift move. Generally, we find that the acceptance rates do
not vanish for small temperatures. This can be easily ex-
plained: the system is able to perform trivial moves with
�H=0. Especially the smallest disks allow for such trivial
moves, as they can often be shifted or exchanged or even put
to a new location by the jump move without generating over-
laps. Even at our last finite temperature 10−4, the acceptance
rate is still decreasing. At this low temperature, the accep-
tance rates depend on the system size for N20 via the
power laws

Ashift�T = 10−4� � 0.118N0.15 �23�

for the shift move,

Ajump�T = 10−4� � 3 � 10−9N2.75 �24�

for the jump move, and

Aswap�T = 10−4� � 2.6 � 10−3N0.85 �25�

for the swap move. For smaller system sizes, there are de-
viations from these curves, as there are no small disks in the
system anymore which can quiver slightly. Instead, all disks
are packed in the densest way and the system is frozen in one
configuration.

IV. DEPENDENCE OF THE DYNAMICS ON SIMULATION
PARAMETERS

As already mentioned in Sec. II, one might argue whether
the move set and the simulation parameters we used are op-
timal. At first sight, one might focus on the question why two
move routines for moving one disk to a new location, but
working on different length scales are used. At first, we only
used one move routine instead of having both a shift move
and a jump move and tried to find out what the optimum
maximum value 	 for moving a disk in an x and y direction
was. The results for various system sizes are shown in Fig. 5.
Here we called the shift/jump move and the swap move with
equal probability. We found that a value of 	�1 led to the
best results within a constant amount of calculation time. We
worked with the same cooling schedule as described in Sec.
III, but only with 44 000 sweeps per temperature step. The
results are averaged over 200 optimization runs each.

However, when having a look at the observables men-
tioned in Sec. III, we found that the results change signifi-
cantly while changing 	. Furthermore, the results depend on
the calculation time. For the results shown in Fig. 6, the
same amount of calculation time was used as for the results
shown in Sec. III. The curves for the expectation value of the
energy gradually approach the limiting curve for large 	 with
increasing 	 �30�. This curve does not change anymore if
increasing 	 beyond the value 	=1000. The same holds true
if comparing the results for �P� and for the susceptibility �
with those in Fig. 3. The specific heat changes its form com-
pletely while increasing 	. For 	=100, one even finds a
double peak structure. When watching the intermediate solu-
tions during an optimization run performed with 	�100, one
might even be able to detect a slight clustering and ordering
effect. Again, here also the results do not change anymore if
increasing the value of 	 from 	=1000 to larger values or
using more calculation time. Thus, we find that the value 	
=1000 is sufficient to get correct results for the thermody-
namic observables.

In order to overcome the problem that the best results are
achieved with 	�1, but the thermodynamic behavior is only
correct for large values of 	, we introduced both a shift move
and a jump move, which are called with probability 1

4 each.
We fixed 	shift=1. The results for our observables do not
change when using 	jump1000. As shown in �30�, the qual-
ity of the achieved optimization results does not depend
much on the value of 	jump. Thus, we used 	jump=1000 from
then on.

When looking at locally minimum solutions, we often had
the impression that they could be improved by the applica-
tion of more complex moves. Therefore, we also tried further
moves, which change a configuration to a larger extent but
do not destroy too much of the previous ordering, such as

�1� randomly selecting two disks with arbitrary radii and
exchanging them;

�2� exchanging three randomly selected disks with arbi-
trary radii;

�3� selecting a circular area and turning all disks whose
midpoints are within this area around the midpoint of the
area by a randomly chosen angle;

�4� selecting a circular area and mirroring all disks
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FIG. 4. �Color online� Overall acceptance rate A vs temperature
T for various system sizes.
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whose midpoints are within this area across a randomly se-
lected line going through the midpoint of the area;

�5� selecting a circular area and performing both the turn-
ing and mirroring as above;

�6� selecting two circular areas of the same size and ex-
changing them in a way that the disks whose midpoints are

inside one of these circular areas are moved to the other area
in the way that their midpoints are relative placed to the
midpoint of the new area as they were formerly placed rela-
tively to the midpoint of the old area, and vice versa;

�7� performing the circular area exchange move as above
and combining it with the turning move;
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FIG. 5. Minimum, mean �with error bars�, and maximum quality of results achieved for various system sizes N with the maximum
amount of 	 shifting a disk in the x and y direction: the results are averaged over 200 optimization runs each.
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�8� performing the circular area exchange move as above
and combining it with the mirroring move;

�9� performing the circular area exchange move as above
and combining it with the turning-and-mirroring move

Furthermore, we tried ruin and recreate-type moves with
constructive elements �31�, which first delete some of the
disks �either entirely at random or within a circular area�,
determine the empty spaces within the configuration, and
then iteratively reinsert the deleted disks in these empty
spaces in an optimum way. However, within the amounts of
the calculation times we used, no further improvements
could be achieved with using these more complex moves,
such that we prefer to stay with our local search approach
here.

V. RECTIFICATION OF NONFEASIBLE SOLUTIONS

However, using this simulated annealing approach with
only a small value for the Lagrange multiplier � and a van-
ishing offset �, one often ends up with solutions, in which
very small overlaps with a size up to 0.01 remain. Of course,
such solutions are not feasible. In order to rectify these so-
lutions, we use a method called contact simulator as an af-
terburner after the main routine which works with simulated
annealing as described above. This afterburner tries to re-
solve overlappings by first identifying pairs �i , j� of overlap-
ping disks and measuring the amount of these overlaps. The
penalty function as defined in Eq. �2�, again with vanishing
offset �, such that it reads

P�i, j� = �ri + rj − d�i, j� if disks i and j overlap

0 otherwise,
	

�26�

can be used for this purpose. The disks are shifted to new
positions according to

v� i
shifted = v� i − 


j=1

j�i

N
v� j − v� i

�v� j − v� i�
P�i, j�

2
, �27�

with v� i denoting again the location of disk i.
As the packings are very dense and as there is often more

than one overlap, one will find that after such a shifting some
overlappings are not resolved completely and even some
new overlappings might occur. Thus, this procedure has to be
iterated, until the convergence condition



i,j

P�i, j� � � �28�

is met for some small number ��0. Depending on the origi-
nal locations of the disks and on the value of �, which we,
e.g., choose as �=10−5, 20–100 iterations are sufficient to
reach convergence. By resolving these overlappings, the ra-
dius of the circumcircle will increase if a disk touching the
circumcircle is shifted to the outside. When this happens,
often one also finds some new holes �usually long stretched
between some larger disks and looking like concave lenses�
in the interior of the configuration, which is a clear indicator

that the solution is worsened by the contact simulator. In
order to reduce this effect, we then measure how much the
various disks lie outside the previous circumcircle with ra-
dius R and measure the quantity

C�i� = ��v� i
shifted� + ri − R if �v� i

shifted� + ri � R

0 otherwise.
	 �29�

Then we determine the new location of a disk as

v� i
new = v� i

shifted�1 −
�C�i�

�v� i
shifted� , �30�

with �� �0;0.5� being the strength of the pressure pushing
the disks inside. Then we determine the new value of R and
set v� iªv� i

new for the next iteration.
Furthermore, we also try to improve our results in this

afterburner by trying moves such as exchanging the locations
of disks with neighboring radii and putting the smallest disks
close to the circumcircle, as they are less of an obstacle there
for getting an excellent solution than they can be in the in-
terior of the configuration. Finally, we end up with improved
solutions, which usually exhibit a reduction of the radius of
the circumcircle by an amount of �10−4−0.4 and a reduction
of the sum of the overlaps to O�10−8�, which is the compu-
tational limit due to the finite numerical precision.

Now one might argue whether such an afterburner is nec-
essary, as the failure is already created by the small values
we use for the parameters � and �, namely, �=1 and �=0.
Surely, when working in another area of the parameter space
�� ,�� with larger values for both � and �, one will always
end up with feasible solutions. However, we found that we
get the best results if performing many runs in parallel just in
this area in which a significant percentage of the solutions
exhibits some small overlappings. Then we can either choose
the best feasible solution or first run the afterburner on the
nonfeasible solutions rectifying them and then select the best
configuration. We also experienced for other problems, such
as the vehicle routing problem �32�, that it is advantageous to
work in an area of the parameter space in which a significant
fraction, but only up to half of the configurations exhibit
small violations of the imposed constraints, whereas the ma-
jority of the solutions are feasible.

VI. INVESTIGATION OF QUASIOPTIMUM SOLUTIONS

As simulated annealing is a heuristic algorithm, there is
no guarantee that it reaches the global optimum of the pro-
posed optimization problem but it usually ends up at one of
the many very good solutions which are qualitatively only
slightly worse than the global optimum. A further advantage
of simulated annealing in combination with the local search
approach, according to which a configuration is only
changed slightly and in a random way, lies in the fact that the
configuration space is sampled in an unbiased way, such that
ending up in one quasioptimum solution is as likely as end-
ing up in another quasioptimum solution. Thus, simulated
annealing is also a useful tool for investigating the valley
structure of the energy landscape of the optimization prob-
lem, with local minimum configurations lying at the bottoms
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of these valleys. Now we want to investigate these quasiop-
timum solutions.

As we generally concentrated on the problem instance
containing N=50 disks, feeling that if we could produce very
good solutions for this largest problem size considered in the
benchmark contest �20� then we would have the algorithmic
techniques necessary to also find good solutions for smaller
system sizes, we produced most solutions for this largest
problem instance and thus want to focus on it throughout this
section. But we want to stress the point that we achieved
analogous results for smaller system sizes, of course based
on a smaller set of quasioptimum results for these smaller
instances �30�. The circumcircle of the best solution for N
=50, which we were able to find and which is shown in Fig.
1, has a radius value 220.600 418 7…. Additionally to this
solution, we found a huge number of quasioptimum solutions
being qualitatively only slightly worse than the global opti-
mum, being locally minimal, such that they cannot be im-
proved any further in the T=0 limit of simulated annealing,
but differing strongly in the arrangement of the disks. In our
investigations, we use the Z=9923 quasioptimum configura-
tions with energy values H�222 that we found by using
simulated annealing.

A. Neighborhood relations between different disks

First of all, we want to investigate some general proper-
ties of these quasioptimum configurations and focus on the
neighborhood relations between the various disks. We con-
sider two disks i and j to be neighbors of each other if their
corresponding cells in a Voronoi diagram �33,34� are adja-
cent to each other. As we deal with disks of different sizes,
the boundaries in the Voronoi diagram are not straight lines
�as it would be the case if constructing Voronoi diagrams of
sets of points or sets of disks with identical radii� but hyper-
bolic curves, as the radii ri of the various disks differ. �Please
note that the results given below remain nearly unchanged if
using a power diagram with straight lines as boundaries of
the cells. The reason for this is that the disks stick so close
together that the hyperbolic boundaries between adjacent
disks within such an arrangement of disks are only slightly
bent.� By connecting the midpoints of disks in adjacent cells,
we get a graph with edges, which comprise the Delaunay
triangulation. Let �� be an edge matrix with

���i, j� = �1 if the cells of disks i and j are adjacent to each other in configuration �

0 otherwise.
	 �31�

Then the overall number e��� of edges in the configuration is
simply given by

e��� =
1

2

i,j

���i, j� . �32�

The minimum number of edges we find in the considered
configurations is 113 and the maximum is 127. The distribu-
tion of the number of edges, which is shown in Fig. 7, ex-
hibits a sharp peak around its mean value �e�=118.72.

Second, we have a look at the average number of neigh-
bors of each disk, depending on the disk radius ri. The aver-

age number of neighbors of disk i is given as

�n�i�� =
1

Z


�

n��i� =
1

Z


�



j

���i, j� . �33�

As Fig. 8 shows, the curve for the average number �n�i�� of
neighbors to disk i with radius ri= i exhibits a rich behavior:
for the smallest disks, this number lies between 2 and 3, as
these disks can be placed rather randomly, either in the inte-
rior, i.e., in one of the holes between the large disks, such
that the number of their neighboring disks is 3, or in the
exterior, i.e., close to the circumcircle, which is touched by

1

0.1

10-2

10-3

10-4

110 115 120 125 130

p(
e)

e

FIG. 7. Probability distribution of the number e of edges denot-
ing the neighborhood relations between the various disks.
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FIG. 8. Average number �n�i�� of neighbors of disk i with radius
ri= i: the fit curve for large ri is given by the power law �n�i��
=0.48ri

0.71.
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two larger neighboring disks, such that the number of neigh-
boring disks is 2. The second case, that small disks are put
close to the circumcircle, becomes obviously more likely
when increasing the disk radius ri from 1 to 9. For ri=9, we
get �n�9��=2.21. Afterwards, the number of neighbors in-
creases with an intermediate maximum at ri=17. For the
large disks, the average number of neighbors increases with
the power law

�n�i�� � ri
�, �34�

with the exponent �=0.71
0.02. Please note that if trying a
linear fit, one neglects the bending of the curve and the best
linear fit 1.4+0.13ri exhibits a larger fit error than a fit with
a power law. Furthermore, note that the exponent 0.71 keeps
cropping up in this problem, especially in the power law
dependence of the critical temperature Tc on the system size
N, but also the number of disks adjacent to the circumcircle
depends on the system size via the power law �N0.71 �30�.
Thus, we suspect that this value is in reality 1 /�2, though we
are not yet able to prove it. For ri=50, we get �n�50��
=7.68.

Here the question arises which disks are adjacent to each
other in the various solutions and whether two disks which
are neighboring each other in one solution, also tend to
neighbor each other in further solutions, i.e., whether there
are common structures in the neighborhood relationship be-
tween the disks. Such common structures, which are also
called backbones and which are based on neighborhood re-
lations, are found in many other NP-complete optimization
problems, such as, e.g., for the traveling salesman problem
�28,35�, in which such a structure is an edge connecting two
points in all solutions. Similarly, such common edges turn up
in vehicle routing problems �32� and nondegenerate produc-
tion planning problems �36�. When working with spin glass
models, such as the Sherrington-Kirkpatrick �SK� model
�37�, groups of spins can be identified which are parallel or
antiparallel to each other in all solutions �38�. Similarly to
the definition of a backbone in �32�, we define an averaged
edge matrix

���i, j�� =
1

Z


�

���i, j� , �35�

from which we can derive the backbones from those entries
with ���i , j��=1. When looking at Fig. 9, we find that some
pairs of neighboring disks are much more likely than others.
Especially, there is a tendency that large disks are adjacent to

large disks. Furthermore, disks with radii ri�15 tend to stick
with the largest disks. Please note that we find the same
behavior that disks with radii of roughly �0.3N tend to stick
with the largest disks also for all other system sizes N20.
When looking at various quasioptimum configurations, one
usually finds that these disks lie in a hole limited by two of
the largest disks and the circumcircle. This result can easily
be explained analytically: consider the case of two disks with
radius N touching each other and touching the circumcircle
with radius R. The maximum rmax for the radius of a disk to
be placed between the two disks and the circumcirle without
generating an overlap is given by

rmax =
R

N + 4R
�2R − N − 2�R2 − 2RN� . �36�

In the limit R→�, we get rmax=N /4 and thus a result close
to our simulation result for a similar scenario.

Summarizing, we find some tendencies for pairs of disks
liking to stick close together. However, backbones, i.e.,
structures which are common to all quasioptimum solutions,
cannot be identified.

B. Properties of the metric induced by the Delaunay
triangulation

Nevertheless, here we want to proceed further and have a
look at the spatial arrangement of the disks not only from the
point of view of nearest neighborhood, but also of next near-
est neighborhood, and so on. The edges of the Delaunay
triangulation induce a neighborhood metric � with ��i , j�
=1 if the Voronoi cells of disks i and j are adjacent to each
other. If disk j is adjacent to disk i and if disk k is a nearest
neighbor of disk j, but not of disk i, then disk k is a next
nearest neighbor of disk i and we set ��i ,k�=2. When com-
pletely exploring the Delaunay graph, we can assign an in-
teger distance value to each pair of disks �i , j�, counting the
minimum number of edges which have to be used to get
from disk i to disk j on this graph. Please note that the
Delaunay triangulation always provides a fully connected
graph, such that we can assign finite distance values to all
pairs of disks. We performed this analysis on all our quasiop-
timum configurations, leading to the results shown in Fig.
10. Here we find that the largest disks have on average the
shortest distance to each other. This result becomes even
more pronounced when looking at the maximum distances
occurring in our quasioptimum solutions. We find that the
largest disks exhibit only a maximum distance of 5 among
each other, medium sized disks a distance of 6, small disks a
distance of 7, and the smallest disks a distance of 8. Obvi-
ously, it is advantageous not to have a bunch of small disks
comprised in the interior of the configuration. When again
having a look at disks with radii �15, we also find here that
they tend to stay close to the largest disks. Please note that
the minimum distance �min between each pair of disks is 1,
as for each pair, at least one quasioptimum configuration
exists, in which these disks are adjacent to each other.

The same result for the average distances can be found
when we consider the Euclidean distances between the disks,
as defined in Eq. �3�. When taking the average distance

0
0.1
0.2
0.3
0.4

0
10

20
30

40
50 0 10

20
30

40
50

0
0.1
0.2
0.3

<η(i,j)>

i

j

<η(i,j)>

FIG. 9. �Color online� Probability that the disks i and j with
radii ri= i and rj = j are neighboring each other.
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�d�i , j�� between the midpoints of the disks in our quasiopti-
mum configurations and subtracting the sum of their radii ri
and rj, we get a similar graphic in Fig. 11 compared to the
left graphic in Fig. 10, which is based on the � metric.

C. Overlaps between different solutions

At this point, we may ask how much different solutions
have generally in common. For answering this question, we
calculate the overlap between pairs of configurations. The
unnormalized overlap q�� between the configurations � and �
is given as

q�� =
1

2

i,j

���i, j����i, j� . �37�

One might want to normalize this overlap to

q̃�� =
q��

min�e���,e����
, �38�

but please note that the minimum number of edges varies
slightly around its mean value �min�e��� ,e�����=117.79.
Thus, we prefer to work with unnormalized overlaps, just as
in the work of Kirkpatrick and Toulouse on the random-link
traveling salesman problem in �39�, but keep in mind that we
have overlap numbers between 0 and 1 like there and in
many other problems �see e.g. �40��. We are also aware of
the fact that our overlaps are not algebraic numbers, as they
are restricted to the interval �0;1�, again like in the work of
Kirkpatrick and Toulouse, whereas when investigating con-

figurations for spin glass models, one gets overlaps in the
range �−1;1�.

Investigating these overlap values, we create a histogram
of the overlap values which occur between the 9923
�9922 /2=49 228 003 pairs �� ,�� of configurations with �
��. The probability with which the overlap values occur
between our quasioptimum configurations is shown in Fig.
12. We find that there is no configuration, which is com-
pletely different from any other configuration, as p�q=0�
=0. The largest overlap value is 125, which is rather close to
the maximum number of edges occurring in a configuration,
which was 127, as can be seen in Fig. 7. The mean value of
the overlaps is �q�=15.5754
5�10−4. The maximum of the
distribution lies at q=15, which 5 601 883 pairs of configu-
rations have as an overlap value. The distribution of the over-
lap values exhibits three peaks, one at 115�q�125, a
smaller one at 83�q�104, and the largest one at 1�q
�41. Overlap values q=85, q=88, and in the ranges 42
�q�82 and 105�q�114 do not occur. If using not all
configurations with R�222 but selecting only those 378 so-
lutions with R�221.2, only the left peak of the distribution
remains, but it becomes narrower: the maximum overlap
found is 24, the maximum of the peak is formed by 50 pairs
of configurations with an overlap of 13.

VII. OPTIMUM VALUES FOR THE CIRCUMCIRCLE

From the point of view of optimization, the focus lies on
getting the best possible result. Here both the radius R of the
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circumcircle and the spatial arrangement of the disks in the
corresponding configurations are of interest. We were able to
match all world records for small system sizes and even to
beat all existing world records for the larger system sizes
considered in the benchmark contest. In this paper, we show
exemplarily the world record configuration for N=50 in Fig.
1. All other world record configurations which were found
during the benchmark competition and by our optimization
runs can be found online �41�. All these world record con-
figurations were created with simulated annealing or its de-
terministic variant �42�, which is also called threshold ac-
cepting �43�. As there is no exact algorithm for this problem,
no solution can be proven to be optimal. In a first step, we
can only refer to the best solutions found so far by the com-
petition between 155 groups from 32 countries having taken
part in the benchmark contest, having applied their various
optimization techniques to this problem �for the algorithms
used by the winning group, see their paper �44��, and having
submitted a total of 27 490 solutions, and compare our re-
sults with the contest records listed on the contest web page
�20�.

Table I shows our results in comparison to the best results
found by these groups during the benchmark competition,
which are provided by the contest organizers Sam Byrd,
Jean-Charles Meyrignac, and Al Zimmermann �20�. When
having a closer look at the radii of the circumcircles for the
various system sizes N, one finds that the radius R�N� in-
creases with the system size via the power law

R�N� = sN1.5. �39�

The prefactor s decreases slightly with increasing N from s
�0.642 for N=25 to s�0.624 for N=50. If we insert this
relation between R and N in Eq. �36� for the maximum value
of the radius of a small disk to be placed between two disks
with radius N and the circumcircle, we get rmax�0.307N for
N=50 and thus reproduce our simulation result that disks
with radii �0.3N tend to stick between two of the largest
disks and the circumcircle, as they are best suited for filling
the hole there. The ratio rmax /N decreases only slightly with
increasing N, such that this result also holds for the other
larger instances we consider.

When fitting the data points (R�N�) for 25�N�50 to a fit
curve, the best fit that can be made assumes a slight logarith-
mic dependence of the prefactor s on the system size N as

s�N� � 0.72 + 2.5 � 10−2 ln�1/N� . �40�

Of course, we are aware of the fact that this is only a small
effect and that this law cannot hold for much larger N.

The power law scaling function is to be expected for op-
timum results, as we can easily derive this power law for
lower and upper bounds to the value of the radius of the
circumcircle. The size R2� of the disk, within which the
various disks lie, has to be at least as large as the sum of the
disk sizes, i.e.,

TABLE I. Comparison of the best results found for N�50 dur-
ing the benchmark contest, in which 155 groups from 32 countries
took part, with our results for N�50.

N Contest record Our value Record

5 9.0013977 9.0013977 matched

6 11.0570404 11.0570404 matched

7 13.4621107 13.4621107 matched

8 16.2217467 16.2217467 matched

9 19.2331939 19.2331939 matched

10 22.0001930 22.0001930 matched

11 24.9606343 24.9606343 matched

12 28.3713894 28.3713894 matched

13 31.5458670 31.5458670 matched

14 35.0956471 35.0956471 matched

15 38.8379955 38.8379955 matched

16 42.4581164 42.4581164 matched

17 46.2913421 46.2913421 matched

18 50.1197626 50.1197626 matched

19 54.2402936 54.2402936 matched

20 58.4005675 58.4005675 matched

21 62.5588771 62.5588771 matched

22 66.7602862 66.7602862 matched

23 71.1994616 71.1994616 matched

24 75.7527041 75.7491426 beaten

25 80.2858644 80.2858644 matched

26 85.0764012 84.9899391 beaten

27 89.7921816 89.7509627 beaten

28 94.5499865 94.5265365 beaten

29 99.5123179 99.4831116 beaten

30 104.5785550 104.5411690 beaten

31 109.7719469 109.6824564 beaten

32 114.8654383 114.8409490 beaten

33 120.2169571 120.0658465 beaten

34 125.4335018 125.3669392 beaten

35 131.1563546 130.9176279 beaten

36 136.5349008 136.4922446 beaten

37 142.1749805 142.0513754 beaten

38 147.8576914 147.4568453 beaten

39 153.5553012 153.3800827 beaten

40 159.4890249 159.1824078 beaten

41 165.2919097 165.0369006 beaten

42 170.9257616 170.8953274 beaten

43 177.0743401 177.0513747 beaten

44 183.1760616 183.0992248 beaten

45 189.6354391 189.2029320 beaten

46 195.9107634 195.5264351 beaten

47 202.1856117 201.7279256 beaten

48 208.6359467 208.0901593 beaten

49 214.6619520 214.2954475 beaten

50 221.0897526 220.6004187 beaten
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N
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2� = �


i=1

N

i2 =
�

6
N�N + 1��2N + 1� �

�

3
N3,

�41�

such that we have the lower bound

R�N� � N1.5/�3 � 0.577N1.5. �42�

A simple upper bound can be derived by considering only
square numbers N=L2. For these numbers, we can imagine
all disks being located on the grid points of a regular square
lattice with lattice constant 2N. The linear dimension of this
lattice is L�2N. Embedding this square lattice in a circle
with radius �2LN, we get

R�N� � �2 � N1.5 � 1.414N1.5. �43�

As the series of numbers R�N� increases monotonically with
N, this power law for the upper bound for the subseries of
square numbers holds true for the overall series.

As already mentioned, we cannot be sure whether we
were able to find globally optimum configurations for the
various values of N. However, when applying simulated an-
nealing to NP-complete spin glass problems, Grest and his
co-workers found the Grest hypothesis �45� according to
which the average quality �H�t of solutions obtained after
some calculation time t deviates from the true global opti-
mum H0 by

�H�t − H0 �
1

ln�t�� , �44�

with the exponent ��1. It has been found that this hypoth-
esis is also valid for other NP-complete problems, such as
the traveling salesman problem �28,46�.

The Grest hypothesis also seems to be valid for this pack-
ing problem as Fig. 13 shows exemplarily for the system size
N=50. We stayed with the same simulation parameters as in

Sec. III but varied the number of sweeps per temperature
step, thus varying linearly the overall calculation time. Al-
though we averaged over 200 optimization runs each, the
error bars are still so large that we are unable to give a good
estimate for the optimum. Thus, we can only state that we
might already have reached the global optimum but we can
only be sure that our best solution is close to it.

Further evidence whether we might already have reached
the global optimum of a problem instance is provided on the
contest web page �20� in a detailed overview of all results of
the 155 groups having taken part in the competition. As a
significant number of groups were able to find independently
the same best known solutions for all system sizes up to N
=23, we think that these small instances might already be
solved optimally.

Finally, we have a look at the density � of a packing,
which is defined as

��N� =

i=1

N ri
2�

R2�N��
. �45�

The density values for the various system sizes are provided
in �41�. For larger system sizes, we get a monotonous in-
crease of the density with increasing N from ��0.841 for
N=20 to ��0.882 for N=50. Please note that one finds for
bidisperse systems with two types of disks with a radius ratio
of less than 5 for large to small, that the density of a binary
disk mixture remains constant at a packing fraction �
�0.84 �47�. However, in our problem, when increasing N,
the ratio between the radii of the largest disk and the smallest
disk also increases like N. This increase might be reflected in
the increase of the density.

VIII. CONCLUSION AND OUTLOOK

In this paper, we considered a multidisperse system of N
hard disks with different integer radii ri �1�ri�N�, for
which the densest packing in a circular environment had to
be found. While solving this problem with simulated anneal-
ing, we found that the cooling process exhibits some inter-
esting properties, e.g., the critical temperature Tc scales with
the system size N via the power law Tc�N0.71. With this
physical optimization approach, we were able to match all
world records for the small system sizes 5�N�23 and N
=25 and even to beat all world record results for N=24 and
all larger system sizes considered in a benchmark competi-
tion which had been held recently and in which 155 groups
from 32 countries took part. Besides achieving many world
records, we were also able to achieve a huge number of
quasioptimum solutions for this problem, which are locally
minimum, and were thus able to compare these solutions for
common properties and to explore the local valleys of the
energy landscape. We found that the average number of
neighbors the larger disks have scale with ri

0.71 with ri being
the radius of the disk. Furthermore, we found that disks with
radii �0.3N like to stay close to the largest disks. The small-
est disks can be placed rather randomly. But with increasing
disk radius, the probability that such a small disk is placed
close to the circumcircle increases. Furthermore, we found
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FIG. 13. Average quality �H�t of solutions for the problem in-
stance with N=50 disks achieved after calculation time t �measured
in sweeps per temperature step� vs the inverse of the logarithm of
the calculation time: the data shown were produced with the same
simulation parameters as in Sec. III, but with 726, 1000, 2500,
5000, 10 000, 22 000, 44 000, 88 000, 145 244, 200 000, 400 000,
and 800 000 sweeps per temperature step, respectively. For each
data point, we averaged the results over 200 optimization runs. A fit
through all mean points gives the fit function 220.6+15 / ln�t�.
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that the optimum radius value R of the circumcircle scales
with the system size via the power law R�N1.5, which we
could also prove analytically by providing lower and upper
bounds. We also found that the subspace of the quasiopti-
mum configurations exhibit the property of ultrametricity
�48�.

We will continue our investigation of this problem by
attempting to introduce a move set based on changes of the
Delaunay graph. We already found out that the definition of
the neighborhood generated by such moves for such a place-
ment problem is not so straightforward as it is for sequencing
problems, like the traveling salesman problem �49�, as the
deletion of an edge and insertion of another edge can result
in further changes of the Delaunay graph, as the disk might
be a neighbor of further disks at its location now. A further
problem occurring in this approach is that the Delaunay
graph does not contain the full information about the loca-
tions of the disks such that some arbitrariness remains if
rebuilding a disk configuration from its Delaunay triangula-
tion.

Furthermore, we will extend our investigations to systems
of hard spheres in three and even higher dimensions. For
three dimensions, in which we have already started to inves-
tigate the problem of packing a multidisperse system of hard
spheres with successive integer radius values in a spherical
environment, we got the result that the optimum radius of the
circumsphere scales with the system size as

R�N� � N4/3. �46�

We could again verify this result analytically with lower and
upper bounds �29�. Then we will move on to other particle
shapes, such as ellipsoids and spherocylinders.
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